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Fractal-small-world dichotomy in real-world networks
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We draw attention to a clear dichotomy between small-world networks exhibiting exponential neighborhood
growth, and fractal-like networks, where neighborhoods grow according to a power law. This distinction is
observed in a number of real-world networks, and is related to the degree correlations and geographical
constraints. We conclude by pointing out that the status of human social networks in this dichotomy is far from
clear.

DOI: 10.1103/PhysRevE.70.016122 PACS nun)er89.75.Da, 89.75.Fb, 89.75.Hc

I. INTRODUCTION graphical embedding; however, one example, the power grid,
) was consistently classified as a “small-world network” so far
The idea of small-world network§l,2], large systems 134 8-1Q. Fractal scaling sheds new light on the effect of
which one can traverse in a few steps, has become extremelyng-range connections, different from the original interpre-
widespread in modern-day scientific and popular thinkingation of Watts and Strogat] and more in line with the
Many networks have been classified as “small worlf&,  theoretical ideas of12]: in such networks, even long-range
ranging from social acquaintance networks, through technosonnections are constrained by Euclidean distance, and

logical ones, to networks in biology. ~ hence cannot give rise to true small-world behavior.
More recently, the notion of “small world” has been given
a precise meaning: a network is a small world, if the average Il. SCALING OF NEIGHBORHOODS

distance between nodes is at most a logarithm of the total

system sizg4]. This scaling behavior is one of the basic Begin with the case of a grapB on an infinite set of
properties of random graphs in the sense ofsEraind Rényi  nodes, with every node connected to finitely many others
[5], though these latter networks are not “small worlds” inonly. Fix a nodev € G, and denote bW, (r) the size of the
the more restrictive sense @3], since they have low clus- radiusr neighborhood of, the number of nodes & which
tering. Focusing our attention to distances in networks, it ian be reached from in at mostr steps. Consider the fol-
intuitively obvious that average distances depend on théwing two limits, which may or may not exist:

quantitative growth of vertex neighborhoods; in particular,

logarithmic average distance corresponds to exponential d= IimM (1)
growth in the size of neighborhoodprecise definitions are r—w logr
given in the next section Conversely, in networks where
: . and
neighborhoods of nodes grow according to a power law
rather than exponentially, average distances also grow as a _log N,(r)
power of system size rather than its logarithm. Hence such a=lim———. (2

r—oo r

networks are not small worlds in the technical sense of the

term. Since a power-law growth in neighborhood size is &Clearly if a finite, nonzero limit ford exists, thena=o;

discrete analog of fractal growtf6,7], we call this the conversely, ifa is finite thend=0. It is easy to see that for

fractal-small-world dichotomy connectedS, if either of the limits exists then it is indepen-
The main point of the paper is to demonstrate that thisdent ofv. It is also immediate that a finite and nonzero value

dichotomy can be clearly observed in classes of real-worldor the limit corresponds in the two cases to the following

networks. Social networks, such as scientific collaboratiorscaling laws:

networks and the Internet at router level, are typical ex- q

amples of small worlds in the strict sense. On the other hand, N, (r) ~r 3)

networks with strong geographical constraints, such agng

power grids or transport networks, are examples of networks

with fractal scaling. It may not be surprising that the topol- N, (r) ~ e*, (4)

ogy of these networks is strongly constrained by their geo'respectively, both valid for large. Equation(3) is the dis-

crete analog ofractal scaling[6,7], with d corresponding to
the mass dimension of a fractal.
*Electronic address: gabor@csanyi.net Our main interest is in finite networks, where a scaling
TCorresponding author. Electronic address: szendroi@math.uu.nlaw can only hold in some finite range. As shown by several
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examples below, the size of neighborhoods is often well apexponential neighborhood growth for some range of radii.
proximated for Xr <L by a uniform scaling law, eitheiB) Following [4], such networks will also be referred to as small
or (4), and at most a constant proportion of nodes lies outsidevorlds in this paper.

this range. Under this assumption, the total humNeof Expressiong3)—9) versus(4)—10) (and generalizations
nodes ofG is to superexponential behavjopresent a dichotomy. On the
L one hand, there are graphs with fractal-like growth of neigh-
N~ > rd~d (5) borhoods, coupled to a power-law diameter. On the other
-1 hand, there are graphs with small-world behavior, character-
ized by at least exponential neighborhood growth coupled to
and at most logarithmic diameter.
L
N ~ 2 e ~ eaL’ (6)
r=1 Ill. REAL-WORLD NETWORKS

respectively. On the other hand, lgtbe the average distance A. Small-world scaling
betweerv and other nodes in the grap8j. This quantity can

We proceed to show that this fractal-small-world di-
then be expressed as

chotomy is actually detectable in a variety of real-world net-
1 L | d+1 works, many of which have loosely been classified so far as

I, ~ NE rrd~ N (7)  “small worlds.” The issue is complicated by the fact that,
r=1 because of saturation effeatsupel exponential scaling is
and only detectable in networks which are really “large”; for a
. network of average diamete& 10, there will only be two or
|~ L3 reer Let 8 three meaningful data points on the N,(r) plot, and any
v’ N< rev ~ N (®) statement that the points really represent exponential growth

may be tenuous. For a case in evidence, consider Fig. 1,
in the two cases. By Eqs$5), (7) and(6), (8), I, andL are  where we plotted the growth dfi,(r) againstr for typical
proportional, independent of system size; and more impornodesv in two social networks: the scientific collaboration
tantly, fractal scaling3) implies network corresponding to the cond-mat preprint arcli,

|~ Nl 9) _and the ne'_twor_k of board members of_ Igrge U.S. companies

v ' in 1999, with links between people sitting on at least one
whereas the exponential scaling l&d leads to board togethef16]. The data are compatible with exponen-

| ~log N (10) tial growth in both cases, and the scaling exponents are in

v ' good agreement. This supports the conclusion that these so-
Logarithmic scaling of average distance with system size isial networks satisfy small-world scaling, but one would ob-
nowadays taken as the definition sfnall-world behavior  viously wish to see a few more data points.
[4]. In the original use of the terrf2,3], a small-world net- More generally, there is ample indirect evidence for the
work was one with a “surprisingly small” average distanceexistence of networks with small-world scaling. As shown by
compared to its size. Logarithmic scaling of average distancgl7,18, and consequently by many other groups, real-world
with size is a precise way to characterize the small-worldhetworks often have a power-law tail in their degree distri-
property in growing network processes, where there is dution. Power-law distribution can be generated by preferen-
meaningful range of system sizes. For a fixed netw@rk tial attachmen{19,2d, and indeed the mod¢lL9] builds a
this is still not sufficient; however, the scaling lag) is  small world[21]. It was consequently shown [i13,14 that
meaningful. Hence, Eq4) will be calledsmall-world scal- the diameter of random scale-free networks is at most loga-
ing. A slight extension is in fact necessary, since some netrithmic, as long as there is no correlation between the de-
works are known to have smaller than logarithmic averageyrees of neighboring vertices; a positive correlation between
distances[13,14. These networks must have a faster thanvertex degrees is expected to decrease average distances

016122-2



FRACTAL-SMALL-WORLD DICHOTOMY IN REAL-WORLD... PHYSICAL REVIEW E 70, 016122(2004)

@ 10° R was noted before that geographic networks behave differ-
K +  gTUgERTD ently from typical small worlds, such as the World Wide Web
© 8 c A . . .
S MO and collaboration networks in several respects; their degree
5 10 -+ + f/:@;’ o distribution need not follow a power laj8] and they appear
‘c; W/Z/ o to have trivial degree-clustering correlatif2g).
? ! e The power grid of the Western United States is a much
< 10 v g-& + deg(v)=1978 . i
e v deg(v)=27 studied example, appearing already[&). As the left panel
§nand? D St in Fig. 3 shows, it satisfies fractal scali® with exponents
1002 & deg(v)=1 [31] lying between 2 and 3. Hence networks structurally

0 5 10 radius equivalent to the U.S. power grid have a larger than logarith-
mic diameter; under the strict definition, the power grid is
FIG. 2. Neighborhood scaling for typical vertices in the Internetnot a small-world network.
router network[22,29, with N~3x10°. The topmost graph was s further examples, consider two other geographical net-
moved vertically for better visibility. For small degree vertices, eX-\yorks. The water network of Hungary, with major water dis-
ponential scaling is apparent; for a vertex with large degree, salliption centers as nodes connected by water pumping lines
ration Is very strong. as edges, is studied on the right panel of Fig. 3. A typical
_ ~ example of a transport network, the London Underground, is
even further. Hence real-world graphs with a power-law disinvestigated on the lower panel of Fig. 3. Stations are repre-
tribution and positive or no correlation between degrees argented by nodes, and two nodes are connected by an edge if
small worlds, exhibiting exponential scaling once the systemhe corresponding stations are neighbors on some Under-

size is sufficiently large. ground line(including Thameslink Both networks satisfy
One example that merits further discussion is the Internefractal scaling(3).
graph, which one treats separately at the interdorfeaito- Note that the power grid, water, and Underground net-

monous systentAS)] and at the router levels. The degree works are all embedded in @=2 dimensional space, the
sequence of both levels was shown to possess a power-lagyrface of the Earth. For the giant component of the water
tail by [18], confirmed also by later measureme[2&]. On  network, we indeed obtain scaling exponebts-2, which
the other hand, both of these networks were claifi&ito  seems to indicate that the distribution of nodes and edges
possess fractal scalin@) in neighborhood growth. Interest- follows the geographical constraints. For the power grid,
ingly, the correlation between degrees of neighboring vertisome of the obtained exponents are significantly higher than
ces is quite different in the two cases. In the AS-level net2. The reason for this is the existence of long-range connec-
work, degrees are negatively correlatg2B], which was tions, already discussed by Watts and Strogat3jiQ]. As
claimed to be a generic feature of technological networksye see here, long-range power supply lines have a significant
[24]. At the router level, however, there is a slight positive effect on the measured fractal dimension, but they are not
correlation[Fig. 1(d)] in Ref. [25]. sufficient to turn the power grid into a small-world network.
Turning to the question of scaling, the AS-level network, Thus the long-range connections are not distributed ran-
with about 10 vertices, is too small; the neighborhood domly, as anticipated b8], but they too respect the Euclid-
growth plots are inconclusive, though consistent with expoean structure. This is more in line with the theoretical dis-
nential scaling. Indeed, despite its negative degree correl&ussion of [11,13, where long-range connections are
tions, one expects the AS-level network to be a small worldintroduced with a probability that depends on Euclidean dis-
since there are no physical restrictions on the placement afince. In the case of the London Underground network, the
links. The router network is constrained by geography tofractal exponents are strictly between 1 and 2, indicating the
some extent, and has degree-independent clustering coeffact that the Underground network penetrates onffyactal)
cients[26], thought to be a characteristic of geographic net-sybset of thed=2 dimensional surface of Greater London,
works. On the other hand, its power law and global topologywhich however is strictly larger thande=1 dimensional set

are driven partially by preferential attachmé@?]. The lat-  that a few isolatedlinear underground lines could cover.
ter effect is strong enough to create a small wqéé]: its

exponential scaling is depicted in Fig. 2.
One point to note is that a power-law tail in the degree C. Mixed scaling

sequence of a network does not necessarily imply that the For completeness, we briefly discuss the possibility of

lgraph IS ﬁ §mal||£wo|r(|jd. Thle t[[nodel @ng] embeds a powefr— mixed behavior: the case of a network exhibiting fractal and
aw graph in a euclidean 1atlice, and 1or Some range ol pagy,.\yorig scalings at different length scales. As discussed
rameters, fractal scaling survives. However, this model, a

) > . th [32], the original model of Watts and Strogd®&] exhibits
well as the model ol30] with similar properties, have a this behavior for small values of the rewiring parameter: at

Wmall scales, the network retains its Euclidean structure, but
at large scales it is a small world. The opposite behavior is
perhaps more natural in social networks. Consider a network
obtained by placing a small-world network of sike>0 in

We turn to real-world networks with fractal scaling, our every lattice point of a lattice\, and connecting vertices
examples coming from the class of geographical networks. lbelonging to different lattice points with some fixed prob-

knowledge not observed in real-world networks.

B. Fractal scaling
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FIG. 3. Scaling of neighborhoods for some geographical networks. Scaling for the pow¢gBignidth N=4941 nodes an&=6594
edges, is illustrated on the left panel. The fractal exponents lie between 2 and 3. The water network of Hunijar¢ 185 nodes and
E=50252 edges. The first two vertices of the right panel belong to the giant component Nf si28247 and fractal dimensiai=2. The
second pair of vertices belongs to the second largest component contilid$5 vertices, and exhibits fractal scaling with exponents
around or below 1. The London Underground network Nas300 nodes connected [#y=348 edges; the scaling graphs from different
starting stations are shifted vertically for better visibility.

ability if the corresponding lattice points are adjacent in the IV. CONCLUSION

lattice. The resulting network is a simple model of a collec- )
tion of cities with small-world populations, where people e have demonstrated a clear dichotomy between large
only socialize with others in their own or in neighboring '€@-world networks, which are small worlds with exponen-

cities. For neighborhood sizég(r) <N, this network exhib- tial neighborhood growth, and fractal networks with a

its small-world scaling, whereas on large scales the underlypowker'laytvhglrg;’\’th' Typical examhplesl of t?.e formetr arehnet-
ing lattice dominates and the scaling becomes fractal. works with Tittie or no geographical continement, such as

For real-world networks. we have not found ConclusiVecollaboration networks and the Internet. The latter are typi-

evidence for this kind of behavior, because a network musp€d PY networks strongly constrained by geography. It also

indeed be very large to show such features. Note that, agmerged that in t'he latter case, the fracltal exponents vary
discussed above, exponential scaling in itself is already diféOnSiderably; so instead of averaged neighborhood scaling

ficult to demonstrate unless the network is sufficiently Iarge.pIOtS’ it is preferable to study the scaling of neighborhood

g o X oo
D. Relationship to other network measures o O WIW social net
O Internet AS

As we discussed above, the small-world property in real- 10° o VA S W e
world networks is typically associated with a strongly right- *® Hungary water net
skewed degree distribution, such as a power law. On the 1 S Londen Liground
other hand, as discussed extensively [BY, small worlds 10
also contain many triangles. In Fig. 4, we plot the average *
local clusteringC, a local measure of triangle density, and 1o° e
the degree distribution varianag for some networks. We x
observe a separation into two clusters, with small worlds
characterized by largé and ¢ values, and fractal networks 0 10 10 c

typically having smaller values. Apart from all the networks
appearing in our earlier discussion, we included some addi- FIG. 4. The average local clusteri@and degree variance?
tional networks, such as the Paris Metro fractal network, andor some small-world network@mpty signg and fractal networks
the small-world web-based social network WIN&3]. (filled signs.
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size N, (r) with radiusr for individual verticesv. acquaintances? Or are contacts on a large scale restricted by
One question that emerges from our discussion is whethegeographical position as well as different social barriers, so
the social network of humarj4,2,34 is a small world in the that one only has circles of acquaintances growing in size
strict sense of neighborhood growth. The two examples oficcording to a power law? The importance of this issue is
social networks studied in this paper do form small worldsemphasized by the fact that, the frivolous example of gossip
indeed, even though geographical proximity obviously playsaside, social contact networks are involved not only in the
some role in their formatioiithis is discussed explicitly in spread of advertising and other essential information, but
[16] for the U.S. board membership netwarklowever, here  also that of viruses, for example, in the case of sexually
Kleinfeld's argument{35] definitely applies: in these small transmitted diseasd86]. We believe that the fractal-small-
worlds, the majority of actors belong to an extremely homo-world dichotomy is central to the true understanding of the
geneous populatiofWestern scientists, U.S. entreprengurs structure of massive real-world graphs.
mostly on one side of racial and class barriers, united by a
common profession. . ACKNOWLEDGMENTS
On a global scale, the answer is much less clear. Is human
society really strongly connected, with sufficiently many We thank Gerald Davis, Mark Newman, and Duncan
nonlocal links to lead to exponential growth in the number ofWatts for providing network data.
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