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We draw attention to a clear dichotomy between small-world networks exhibiting exponential neighborhood
growth, and fractal-like networks, where neighborhoods grow according to a power law. This distinction is
observed in a number of real-world networks, and is related to the degree correlations and geographical
constraints. We conclude by pointing out that the status of human social networks in this dichotomy is far from
clear.
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I. INTRODUCTION

The idea of small-world networks[1,2], large systems
which one can traverse in a few steps, has become extremely
widespread in modern-day scientific and popular thinking.
Many networks have been classified as “small worlds”[3],
ranging from social acquaintance networks, through techno-
logical ones, to networks in biology.

More recently, the notion of “small world” has been given
a precise meaning: a network is a small world, if the average
distance between nodes is at most a logarithm of the total
system size[4]. This scaling behavior is one of the basic
properties of random graphs in the sense of Erdős and Rényi
[5], though these latter networks are not “small worlds” in
the more restrictive sense of[3], since they have low clus-
tering. Focusing our attention to distances in networks, it is
intuitively obvious that average distances depend on the
quantitative growth of vertex neighborhoods; in particular,
logarithmic average distance corresponds to exponential
growth in the size of neighborhoods(precise definitions are
given in the next section). Conversely, in networks where
neighborhoods of nodes grow according to a power law
rather than exponentially, average distances also grow as a
power of system size rather than its logarithm. Hence such
networks are not small worlds in the technical sense of the
term. Since a power-law growth in neighborhood size is a
discrete analog of fractal growth[6,7], we call this the
fractal–small-world dichotomy.

The main point of the paper is to demonstrate that this
dichotomy can be clearly observed in classes of real-world
networks. Social networks, such as scientific collaboration
networks and the Internet at router level, are typical ex-
amples of small worlds in the strict sense. On the other hand,
networks with strong geographical constraints, such as
power grids or transport networks, are examples of networks
with fractal scaling. It may not be surprising that the topol-
ogy of these networks is strongly constrained by their geo-

graphical embedding; however, one example, the power grid,
was consistently classified as a “small-world network” so far
[3,4,8–10]. Fractal scaling sheds new light on the effect of
long-range connections, different from the original interpre-
tation of Watts and Strogatz[3] and more in line with the
theoretical ideas of[12]: in such networks, even long-range
connections are constrained by Euclidean distance, and
hence cannot give rise to true small-world behavior.

II. SCALING OF NEIGHBORHOODS

Begin with the case of a graphG on an infinite set of
nodes, with every node connected to finitely many others
only. Fix a nodevPG, and denote byNvsrd the size of the
radiusr neighborhood ofv, the number of nodes ofG which
can be reached fromv in at mostr steps. Consider the fol-
lowing two limits, which may or may not exist:

d = lim
r→`

log Nvsrd
log r

s1d

and

a = lim
r→`

log Nvsrd
r

. s2d

Clearly if a finite, nonzero limit ford exists, thena=`;
conversely, ifa is finite thend=0. It is easy to see that for
connectedG, if either of the limits exists then it is indepen-
dent ofv. It is also immediate that a finite and nonzero value
for the limit corresponds in the two cases to the following
scaling laws:

Nvsrd , rd s3d

and

Nvsrd , ear , s4d

respectively, both valid for larger. Equation(3) is the dis-
crete analog offractal scaling[6,7], with d corresponding to
the mass dimension of a fractal.

Our main interest is in finite networksG, where a scaling
law can only hold in some finite range. As shown by several
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examples below, the size of neighborhoods is often well ap-
proximated for 1, r ,L by a uniform scaling law, either(3)
or (4), and at most a constant proportion of nodes lies outside
this range. Under this assumption, the total numberN of
nodes ofG is

N , o
r=1

L

rd , Ld s5d

and

N , o
r=1

L

ear , eaL, s6d

respectively. On the other hand, letlv be the average distance
betweenv and other nodes in the graph[3]. This quantity can
then be expressed as

lv ,
1

N
o
r=1

L

rr d ,
Ld+1

N
s7d

and

lv ,
1

N
o
r=1

L

rear ,
LeaL

N
s8d

in the two cases. By Eqs.(5), (7) and (6), (8), lv andL are
proportional, independent of system size; and more impor-
tantly, fractal scaling(3) implies

lv , N1/d, s9d

whereas the exponential scaling law(4) leads to

lv , log N. s10d

Logarithmic scaling of average distance with system size is
nowadays taken as the definition ofsmall-world behavior
[4]. In the original use of the term[2,3], a small-world net-
work was one with a “surprisingly small” average distance
compared to its size. Logarithmic scaling of average distance
with size is a precise way to characterize the small-world
property in growing network processes, where there is a
meaningful range of system sizes. For a fixed networkG,
this is still not sufficient; however, the scaling law(4) is
meaningful. Hence, Eq.(4) will be calledsmall-world scal-
ing. A slight extension is in fact necessary, since some net-
works are known to have smaller than logarithmic average
distances[13,14]. These networks must have a faster than

exponential neighborhood growth for some range of radii.
Following [4], such networks will also be referred to as small
worlds in this paper.

Expressions(3)–(9) versus(4)–(10) (and generalizations
to superexponential behavior) present a dichotomy. On the
one hand, there are graphs with fractal-like growth of neigh-
borhoods, coupled to a power-law diameter. On the other
hand, there are graphs with small-world behavior, character-
ized by at least exponential neighborhood growth coupled to
at most logarithmic diameter.

III. REAL-WORLD NETWORKS

A. Small-world scaling

We proceed to show that this fractal–small-world di-
chotomy is actually detectable in a variety of real-world net-
works, many of which have loosely been classified so far as
“small worlds.” The issue is complicated by the fact that,
because of saturation effects(super) exponential scaling is
only detectable in networks which are really “large”; for a
network of average diameterl !10, there will only be two or
three meaningful data points on ther −Nvsrd plot, and any
statement that the points really represent exponential growth
may be tenuous. For a case in evidence, consider Fig. 1,
where we plotted the growth ofNvsrd againstr for typical
nodesv in two social networks: the scientific collaboration
network corresponding to the cond-mat preprint archive[15],
and the network of board members of large U.S. companies
in 1999, with links between people sitting on at least one
board together[16]. The data are compatible with exponen-
tial growth in both cases, and the scaling exponents are in
good agreement. This supports the conclusion that these so-
cial networks satisfy small-world scaling, but one would ob-
viously wish to see a few more data points.

More generally, there is ample indirect evidence for the
existence of networks with small-world scaling. As shown by
[17,18], and consequently by many other groups, real-world
networks often have a power-law tail in their degree distri-
bution. Power-law distribution can be generated by preferen-
tial attachment[19,20], and indeed the model[19] builds a
small world [21]. It was consequently shown in[13,14] that
the diameter of random scale-free networks is at most loga-
rithmic, as long as there is no correlation between the de-
grees of neighboring vertices; a positive correlation between
vertex degrees is expected to decrease average distances

FIG. 1. The scaling of neigh-
borhood size for typical vertices
in two small-world social net-
works. The cond-mat collabora-
tion network [15] has N=17636
nodes andE=55270 edges. The
1999 U.S. board membership net-
work [16] includes data about 916
large U.S. companies and a total
of N=7680 board members con-
nected byE=55436 links.
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even further. Hence real-world graphs with a power-law dis-
tribution and positive or no correlation between degrees are
small worlds, exhibiting exponential scaling once the system
size is sufficiently large.

One example that merits further discussion is the Internet
graph, which one treats separately at the interdomain[auto-
monous system(AS)] and at the router levels. The degree
sequence of both levels was shown to possess a power-law
tail by [18], confirmed also by later measurements[22]. On
the other hand, both of these networks were claimed[18] to
possess fractal scaling(3) in neighborhood growth. Interest-
ingly, the correlation between degrees of neighboring verti-
ces is quite different in the two cases. In the AS-level net-
work, degrees are negatively correlated[23], which was
claimed to be a generic feature of technological networks
[24]. At the router level, however, there is a slight positive
correlation[Fig. 1(d)] in Ref. [25].

Turning to the question of scaling, the AS-level network,
with about 104 vertices, is too small; the neighborhood
growth plots are inconclusive, though consistent with expo-
nential scaling. Indeed, despite its negative degree correla-
tions, one expects the AS-level network to be a small world,
since there are no physical restrictions on the placement of
links. The router network is constrained by geography to
some extent, and has degree-independent clustering coeffi-
cients[26], thought to be a characteristic of geographic net-
works. On the other hand, its power law and global topology
are driven partially by preferential attachment[27]. The lat-
ter effect is strong enough to create a small world[28]: its
exponential scaling is depicted in Fig. 2.

One point to note is that a power-law tail in the degree
sequence of a network does not necessarily imply that the
graph is a small world. The model of[12] embeds a power-
law graph in a Euclidean lattice, and for some range of pa-
rameters, fractal scaling survives. However, this model, as
well as the model of[30] with similar properties, have a
strong negative correlation between vertex degrees, to our
knowledge not observed in real-world networks.

B. Fractal scaling

We turn to real-world networks with fractal scaling, our
examples coming from the class of geographical networks. It

was noted before that geographic networks behave differ-
ently from typical small worlds, such as the World Wide Web
and collaboration networks in several respects; their degree
distribution need not follow a power law[8] and they appear
to have trivial degree-clustering correlation[26].

The power grid of the Western United States is a much
studied example, appearing already in[3]. As the left panel
in Fig. 3 shows, it satisfies fractal scaling(3) with exponents
[31] lying between 2 and 3. Hence networks structurally
equivalent to the U.S. power grid have a larger than logarith-
mic diameter; under the strict definition, the power grid is
not a small-world network.

As further examples, consider two other geographical net-
works. The water network of Hungary, with major water dis-
tribution centers as nodes connected by water pumping lines
as edges, is studied on the right panel of Fig. 3. A typical
example of a transport network, the London Underground, is
investigated on the lower panel of Fig. 3. Stations are repre-
sented by nodes, and two nodes are connected by an edge if
the corresponding stations are neighbors on some Under-
ground line (including Thameslink). Both networks satisfy
fractal scaling(3).

Note that the power grid, water, and Underground net-
works are all embedded in ad=2 dimensional space, the
surface of the Earth. For the giant component of the water
network, we indeed obtain scaling exponentsD<2, which
seems to indicate that the distribution of nodes and edges
follows the geographical constraints. For the power grid,
some of the obtained exponents are significantly higher than
2. The reason for this is the existence of long-range connec-
tions, already discussed by Watts and Strogatz in[3,10]. As
we see here, long-range power supply lines have a significant
effect on the measured fractal dimension, but they are not
sufficient to turn the power grid into a small-world network.
Thus the long-range connections are not distributed ran-
domly, as anticipated by[3], but they too respect the Euclid-
ean structure. This is more in line with the theoretical dis-
cussion of [11,12], where long-range connections are
introduced with a probability that depends on Euclidean dis-
tance. In the case of the London Underground network, the
fractal exponents are strictly between 1 and 2, indicating the
fact that the Underground network penetrates only a(fractal)
subset of thed=2 dimensional surface of Greater London,
which however is strictly larger than ad<1 dimensional set
that a few isolated(linear) underground lines could cover.

C. Mixed scaling

For completeness, we briefly discuss the possibility of
mixed behavior: the case of a network exhibiting fractal and
small-world scalings at different length scales. As discussed
in [32], the original model of Watts and Strogatz[3] exhibits
this behavior for small values of the rewiring parameter: at
small scales, the network retains its Euclidean structure, but
at large scales it is a small world. The opposite behavior is
perhaps more natural in social networks. Consider a network
obtained by placing a small-world network of sizeN@0 in
every lattice point of a latticeL, and connecting vertices
belonging to different lattice points with some fixed prob-

FIG. 2. Neighborhood scaling for typical vertices in the Internet
router network[22,29], with N<33105. The topmost graph was
moved vertically for better visibility. For small degree vertices, ex-
ponential scaling is apparent; for a vertex with large degree, satu-
ration is very strong.
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ability if the corresponding lattice points are adjacent in the
lattice. The resulting network is a simple model of a collec-
tion of cities with small-world populations, where people
only socialize with others in their own or in neighboring
cities. For neighborhood sizesNvsrd!N, this network exhib-
its small-world scaling, whereas on large scales the underly-
ing lattice dominates and the scaling becomes fractal.

For real-world networks, we have not found conclusive
evidence for this kind of behavior, because a network must
indeed be very large to show such features. Note that, as
discussed above, exponential scaling in itself is already dif-
ficult to demonstrate unless the network is sufficiently large.

D. Relationship to other network measures

As we discussed above, the small-world property in real-
world networks is typically associated with a strongly right-
skewed degree distribution, such as a power law. On the
other hand, as discussed extensively by[3], small worlds
also contain many triangles. In Fig. 4, we plot the average
local clusteringC, a local measure of triangle density, and
the degree distribution variances2 for some networks. We
observe a separation into two clusters, with small worlds
characterized by largeC ands2 values, and fractal networks
typically having smaller values. Apart from all the networks
appearing in our earlier discussion, we included some addi-
tional networks, such as the Paris Metro fractal network, and
the small-world web-based social network WIW[33].

IV. CONCLUSION

We have demonstrated a clear dichotomy between large
real-world networks, which are small worlds with exponen-
tial neighborhood growth, and fractal networks with a
power-law growth. Typical examples of the former are net-
works with little or no geographical confinement, such as
collaboration networks and the Internet. The latter are typi-
fied by networks strongly constrained by geography. It also
emerged that in the latter case, the fractal exponents vary
considerably; so instead of averaged neighborhood scaling
plots, it is preferable to study the scaling of neighborhood

FIG. 3. Scaling of neighborhoods for some geographical networks. Scaling for the power grid[3], with N=4941 nodes andE=6594
edges, is illustrated on the left panel. The fractal exponents lie between 2 and 3. The water network of Hungary hasN=41495 nodes and
E=50252 edges. The first two vertices of the right panel belong to the giant component of sizeN1=39247 and fractal dimensiond<2. The
second pair of vertices belongs to the second largest component containingN2=465 vertices, and exhibits fractal scaling with exponents
around or below 1. The London Underground network hasN=300 nodes connected byE=348 edges; the scaling graphs from different
starting stations are shifted vertically for better visibility.

FIG. 4. The average local clusteringC and degree variances2

for some small-world networks(empty signs) and fractal networks
(filled signs).
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sizeNvsrd with radiusr for individual verticesv.
One question that emerges from our discussion is whether

the social network of humans[1,2,34] is a small world in the
strict sense of neighborhood growth. The two examples of
social networks studied in this paper do form small worlds
indeed, even though geographical proximity obviously plays
some role in their formation(this is discussed explicitly in
[16] for the U.S. board membership network). However, here
Kleinfeld’s argument[35] definitely applies: in these small
worlds, the majority of actors belong to an extremely homo-
geneous population(Western scientists, U.S. entrepreneurs)
mostly on one side of racial and class barriers, united by a
common profession.

On a global scale, the answer is much less clear. Is human
society really strongly connected, with sufficiently many
nonlocal links to lead to exponential growth in the number of

acquaintances? Or are contacts on a large scale restricted by
geographical position as well as different social barriers, so
that one only has circles of acquaintances growing in size
according to a power law? The importance of this issue is
emphasized by the fact that, the frivolous example of gossip
aside, social contact networks are involved not only in the
spread of advertising and other essential information, but
also that of viruses, for example, in the case of sexually
transmitted diseases[36]. We believe that the fractal–small-
world dichotomy is central to the true understanding of the
structure of massive real-world graphs.
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